Numpy refer
https://docs.scipy.org/doc/numpy/reference/generated/numpy.linspace.html
numpy.linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None, axis=0)
Parameters
start : array_like
The starting value of the sequence. 序列的初始值。
stop : array_like
The end value of the sequence, unless endpoint is set to False. In that case, the sequence consists of all but the last of num + 1
evenly spaced samples, so that stop is excluded. Note that the step size changes when endpoint is False.
num : int, optional
Number of samples to generate. Default is 50. Must be non-negative. 默认值是50,必须是非负数。
endpoint : bool, optional
If True, stop is the last sample. Otherwise, it is not included. Default is True.
retstep : bool, optional
If True, return (samples, step), where step is the spacing between samples.
dtype : dtype, optional
The type of the output array. If dtype
is not given, infer the data type from the other input arguments.
axis : int, optional
The axis in the result to store the samples. Relevant only if start or stop are array-like. By default (0), the samples will be along a new axis inserted at the beginning. Use -1 to get an axis at the end.
Returns
samples : ndarray
There are num equally spaced samples in the closed interval [start, stop]
or the half-open interval [start, stop)
(depending on whether endpoint is True or False).
step : float, optional
Only returned if retstep is True
Size of spacing between samples.
例子
1 | 2.0, 3.0, num=5) np.linspace( |
Graphical illustration:
1 | import matplotlib.pyplot as plt |
Numpy sharpsightlab
先看个简单的例子:
1 | np.linspace(start = 0, stop = 100, num = 5) |
看这张图可能更加好理解:
可以看出,在我们指定的范围内(从0开始,100为结束),有5个元素(0、25、50、75、100)。
另外,如果指定endpoint = False,那100这个值就不包括在内。num在这里我们指定的是5,如果没有指定,那默认值是50。
这张图里有3个参数,分别是start、stop、num。这会是我们很常用的参数。
OK,接下来我们看看默认写法是怎么样的:
1 | np.linspace(0, 100, 5) |
相当于:
1 | np.linspace(start = 0, stop = 100, num = 5) |
例子
1 | 0, stop = 1, num = 11) np.linspace(start = |
1 | 0, stop = 100, num = 11) np.linspace(start = |
1 | 1, stop = 5, num = 4, endpoint = False) np.linspace(start = |
1 | 0, stop = 100, num = 5, dtype = int) np.linspace(start = |